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X-CHIP: an integrated platform for high-throughput
protein crystallization and on-the-chip X-ray

diffraction data collection

The X-CHIP (X-ray Crystallization High-throughput Inte-
grated Platform) is a novel microchip that has been developed
to combine multiple steps of the crystallographic pipeline
from crystallization to diffraction data collection on a single
device to streamline the entire process. The system has been
designed for crystallization condition screening, visual crystal
inspection, initial X-ray screening and data collection in a
high-throughput fashion. X-ray diffraction data acquisition
can be performed directly on-the-chip at room temperature
using an in situ approach. The capabilities of the chip
eliminate the necessity for manual crystal handling and
cryoprotection of crystal samples, while allowing data collec-
tion from multiple crystals in the same drop. This technology
would be especially beneficial for projects with large volumes
of data, such as protein-complex studies and fragment-based
screening. The platform employs hydrophilic and hydrophobic
concentric ring surfaces on a miniature plate transparent to
visible light and X-rays to create a well defined and stable
microbatch crystallization environment. The results of crystal-
lization and data-collection experiments demonstrate that
high-quality well diffracting crystals can be grown and high-
resolution diffraction data sets can be collected using this
technology. Furthermore, the quality of a single-wavelength
anomalous dispersion data set collected with the X-CHIP at
room temperature was sufficient to generate interpretable
electron-density maps. This technology is highly resource-
efficient owing to the use of nanolitre-scale drop volumes. It
does not require any modification for most in-house and
synchrotron beamline systems and offers a promising
opportunity for full automation of the X-ray structure-
determination process.

1. Introduction

High-throughput protein crystallography can be a time-
consuming and resource-intensive endeavor. Although recent
years have seen many advances in the field, screening for
suitable crystallization conditions using common commer-
cially available platforms still requires considerable amounts
of protein and reagents. Furthermore, diffraction-quality
testing and data collection typically involve physical extraction
and cryogenic freezing of the crystal samples, which may have
a significant impact on the integrity of the crystal (Garman,
1999). To acquire high-quality diffraction data, both the
crystallization conditions and the cryoprotectants must be
further optimized. These steps can be time-consuming and are
often restricted to experienced users (Alcorn & Juers, 2010).
In response to these concerns, the last decade has seen a
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Figure 1

The X-CHIP was designed and developed as an alternative to the conventional stages of the existing crystallization to data collection process.

significant surge of developments in crystallography-aimed
microtechnology, specifically the use of crystallization chips.
To date, the field has been dominated by a range of micro-
fluidic devices (Li & Ismagilov, 2010), with one of the most
significant differences between them being the type of crys-
tallization technique that they employ. Several devices have
been developed and even commercialized (such as the Topaz
crystallizer from Fluidigm Corp., California, USA and The
Crystal Former from Microlytic Inc., Massachusetts, USA)
that utilize free-interface diffusion (FID; Hansen et al., 2002).
Other chips employ nanochannels to create counter-diffusion
crystallization (Hasegawa et al.,2007; Ng et al., 2008; Dhouib et
al., 2009) or nanodroplets that simulate batch crystallization
(Zheng et al., 2003). There are two clear parallel implications
in all these devices. They are all striving to increase the effi-
ciency of the hit-identification process and are offering the
possibility of in situ X-ray analysis and, in favorable cases,
diffraction data collection for structure determination (Zheng
et al., 2004; Hansen et al., 2006; Ng et al., 2008; May et al., 2008;
Dhouib et al., 2009)

The X-CHIP' (Chirgadze et al., 2009) addresses the same
challenges of high-throughput crystallography using an alter-
native approach and has a number of unique additional
advantages. In contrast to microfluidic chips, the crystal-
lization process takes place on the chip surface in droplet
arrays of aqueous protein and crystallization reagent mixtures
under a layer of oil. These microbatch arrays are made
possible by altering the chip surface with a unique coating,
creating defined areas of varying hydrophobicity. This paper
presents the design of the device and accompanying tools for
setting up crystallization trials and mounting the chip for data
collection, as well as the important benefits, limitations and
implications that are inherent to this platform. It also

! For any inquires about the X-CHIP please contact the corresponding author.

describes proof-of-concept experiments in which this tech-
nology was utilized for crystal growth, visual inspection, X-ray
diffraction data collection and structure determination of two
native and one selenomethionine-labeled protein targets. The
presented results show that large well diffracting crystals can
be grown and high-quality data sets sufficient for structure
determination can be collected on a home as well as a
synchrotron X-ray source.

2. X-CHIP design and application

The principal idea behind the X-CHIP was to create a plat-
form that presents an alternative to the conventional crystallo-
graphic pipeline by placing crystallization condition screening,
crystal inspection and data collection onto one device,
streamlining the entire process and eliminating crystal hand-
ling and arduous cryogenic techniques (Fig. 1). The chip is
made from a material chosen for its visual light transparency
and relatively low absorption of X-ray radiation. An X-CHIP
with a thickness of 0.375 mm absorbed approximately 30% of
the X-ray intensity of the primary synchrotron beam, which
was attenuated 1800-2000 times to avoid excessive radiation
damage to the crystal during data acquisition. Designed to be
compatible with most standard goniometers, the device inserts
into a chip-base (possessing a machined slot) for support and
simple mounting. A plastic receptacle holds multiple chips
mounted on bases, providing rigidity for setup, storage and
visual inspection of the crystallization drops, and can be
covered with a special lid to prevent dust contamination. The
chip, along with supporting tools, is shown in Fig. 2.

The system described applies principles of the microbatch
crystallization method, the high effectiveness and unique
benefits of which have been described elsewhere (D’Arcy et
al., 1996, 2003; Chayen, 1998). On the surface of the chip,
circular hydrophilic areas are inscribed in hydrophobic annuli

534 Kisselman et al. + X-CHIP

Acta Cryst. (2011). D67, 533-539



research papers

in ordered arrays (Figs. 2a and 2b). Nanolitre volumes of
aqueous protein and precipitant solutions are mixed onto the
hydrophilic circle by sequential addition and then covered by
an oil layer, which is dispensed on top of the drop and is
stabilized on the surrounding hydrophobic ring. The inter-
actions between the aqueous phase, oil layer and coated
surface create highly defined droplets of predictable volume
and thickness and prevent drops from fusing with each other
during crystallization setup and data acquisition. The design of
the chip currently uses 1 x 6,4 x 6 or 4 x 12 formats and its
size permits visual inspection of the entire chip in one image
(Fig. 3a).

3. Materials and methods

Previously investigated targets, the protein kinase domain of
human ephrin receptor tyrosine kinase A3 (EphA3; Davis et
al., 2008) and the Pseudomonas aeruginosa alkylhydroperox-
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idase D protein (PA0269; PDB entry 204d; Clarke et al., 2011),
were selected as model proteins to demonstrate the feasibility
of crystal growth and in situ data collection using the X-CHIP.
Following several rounds of on-chip optimization, both
projects were crystallized under conditions similar to those in
the cited literature. EphA3 at 15 mg ml~" and native PA0269
at 10 mgml™" were crystallized at a 1:1 ratio with 0.2 M
ammonium sulfate, 0.1 M HEPES pH 7.5, 25% PEG 3350 and
0.8 M ammonium sulfate, 0.1 M sodium citrate pH 4.0,
respectively. For crystallization-drop setup, a protein-sample
volume of 200-250 nl was mixed with an equal volume of
precipitant solution and then covered by an oil volume of
0.75-1.25 pl; all solutions were dispensed with a Gilson P2
pipette. Prior to setup, the chip was inserted into the holder,
which was subsequently covered with a lid to prevent
contamination. Chips were stored for 1-4 weeks without
significant evaporation and were transported by road to the
synchrotron beamline. Crystals from both stored chips as well
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Schematics and images of the X-CHIP. (a) Top-view schematic of the 24-drop format chip; hydrophilic and hydrophobic areas are shown in light and dark
gray, respectively (other formats include six and 48 drops; not shown). (b) Cross-section of the chip. (¢) X-CHIP on a base and a four-chip receptacle
device. (d) X-CHIP with 24 crystallization drops mounted on a goniometer.

Acta Cryst. (2011). D67, 533—539 Kisselman et al. + X-CHIP 535



research papers

as chips set up at the synchrotron were used to collect
diffraction data sets.

In-house data sets were collected on a Rigaku FR-E
Superbright rotating-anode X-ray source equipped with a
Rigaku R-AXIS HTC image plate as a detector (Rigaku, The

C
Figure 3 @

Woodlands, Texas, USA). The synchrotron data sets were
collected on the IMCA-CAT ID-17 beamline at the Advanced
Photon Source (APS) facility with appropriate beam
attenuation using a Pilatus 6M detector (Dectris Ltd, Baden,
Switzerland). The X-CHIP was manually mounted onto the
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Experimental results. (a) Section of a 4 x 6 X-CHIP with a two-dimensional optimization of two crystallization conditions for native PA0269 taken two
weeks after initial setup. (b) Crystals of EphA3 grown overnight and the crystals were approximately 150 pm in length. (¢) On-the-chip diffraction image
for an EphA3 crystal collected on a Rigaku FR-E rotating-anode generator using an R-AXIS HTC detector. (d) Part of an experimental electron-density
map generated using the SAD PA0269SM data set collected directly from the crystal grown on the X-CHIP superimposed with the protein Co trace

(shown as a solid line).

536 Kisselman et al. + X-CHIP

Acta Cryst. (2011). D67, 533-539



research papers

Table 1
Summary of selected data sets.

Values in parentheses are for the highest resolution shell. Benchmark data are shown in italics.

EphA3 EphA3
Crystal is in/on X-CHIP CryoLoop
Sample temperature (K) 295 100
X-ray source Rigaku FR-E BM-17 APS
Wavelength (A) 1.54 1.00
Detector R-AXIS HTC MAR 300 CCD
Space group | P2, P2,
Resolution (A) 2.00 (2.10-2.00) 1.93 (2.03-1.93)
Data-collection time (min) 100 29
A@iora () 100% 190
Mosaic spread (°) 0.100 1.048
Completeness (%) 85.3% 98.4
Multiplicity 24 3.6
(Ilo(I)) 45(22) 12.9 (5.0)
Ruerge (%) 8.8 (34.6) 4.9 (9.7)

EphA3 PAO269SMt PA0269 PA0269SM
X-CHIP CryoLoop X-CHIP X-CHIP
100 295 295
ID-17 APS ID-17 APS ID-17 APS ID-17 APS
0.97934 1.00 0.97938
Pilatus 6M ADSC Q210r Pilatus 6M Pilatus 6M
P6522 P6522 P6522
1.95 (2.05-1.95) 1.75 (1.84-1.75) 1.95 (2.05-1.95) 1.95 (2.05-1.95)
74 3.0 33
185 90 100
0.360 0.364 0.046 0.160
99.8 100 100
10.6 9.5 10.3
7.5 (2.7) 19.4 (3.5) 12.1 (2.7) 20.8 (3.9)
10.9 (34.6) 7.5 (49.9) 8.2 (47.5) 6.9 (50.2)

+ Single-wavelength anomalous dispersion (SAD) data collection using anomalous signal from selenomethionine. i A completeness of 99% was achievable from the same crystal with

a total oscillation angle of 140°.

goniometers as shown in Fig. 2(d). Individual samples were
initially optically centered and then centered using diffraction
to refine the crystal position. In both cases the cryostream was
blocked and data collection was performed at room
temperature.

4. Results

Two important aspects of the described system were investi-
gated throughout this study; the capacity of the chip to pro-
duce good-quality crystals and the feasibility of the acquisition
(in situ) of diffraction data of sufficient quality for de novo
structure determination. To assess the first task, the reprodu-
cibility of previous hits obtained by the sitting-drop vapor-
diffusion technique was tested. For both the EphA3 and
PA0269 projects, vapor-diffusion crystallization conditions
resulted in high-quality crystals on the X-CHIP (Figs. 3a and
3b). For PA0269, on-chip optimization further improved the
crystal size and quality and decreased the number of crystals
per drop (Fig. 3a). These results demonstrate that the X-CHIP
can be successfully used to obtain and optimize crystallization
hits and grow single crystals that are large enough for
straightforward data collection.

Proof-of-concept experiments for on-the-chip data collec-
tion were carried out on the rotating-anode source and the
synchrotron beamline. Initial data-collection trials using the
in-house X-ray source led to the acquisition of a complete
EphA3 data set. While the experiment was conducted at room
temperature, diffraction data could still be obtained with
sufficient completeness, even for crystals of such a low-
symmetry space group as P2; (Table 1). On the synchrotron
beamline, data sets were collected for EphA3, PA0269 and a
PA0269 selenomethionine derivative (SAD). The high sensi-
tivity and ultrafast readout time of the Pilatus 6M detector
allowed complete data sets to be collected quickly at room
temperature without significant degradation of the sample and
with excellent processing statistics. Owing to the finely focused
beam (50 x 50 pum), it was possible to collect data from

multiple small crystals grown within the same drop without
any obvious impact on the diffraction quality of neighboring
crystals. A particularly interesting result can be observed by
comparing the mosaic spread between the X-CHIP and the
benchmark data (i.e. CryoLoop) in Table 1. It is evident that
the mosaic spread was consistently lower for data sets
collected using the chip and in the case of PA0269 was as low as
0.046°. Furthermore, based on resolution range alone, EphA3
crystals only started showing radiation damage after as long as
10 min of continuous X-ray exposure, which was more then
twice the time needed to obtain a full data set (data not
shown).

For crystallization of EphA3 and PA0269, paraffin oil was
used to coat the crystallization drops after protein and preci-
pitant solutions had been dispensed. Other oils have been
explored, such as Al’'s Oil (Hampton Research; a 50/50
mixture of paraffin oil and silicone oil), silicone oil and a 50/50
mixture of Paratone and paraffin oils. Higher viscosity oils
(paraffin and Paratone/paraffin) performed better on the
X-CHIP by being highly restricted to the hydrophobic ring
boundaries. The thinner silicone oil was found to flow outside
of these boundaries, causing drops to merge. Al’s Oil required
more careful application compared with higher viscosity oils,
but proved to stay within the hydrophobic boundaries.
Crystallization conditions containing ethanol, 2-methyl-2,4-
pentanediol (MPD) and detergents were also tested on the
X-CHIP. Ethanol tolerance was tested with a 5-30% gradient
using paraffin oil as a cover. The phase separation within the
crystallization drops remained intact over the entire gradient
range. Crystallization drops containing MPD in combination
with different oils tolerated up to 8% MPD before they began
to spill over into the hydrophobic area. While this may exclude
some MPD-based conditions from being used on the X-CHIP,
the impact on the overall versatility is low since for most initial
screens available from Hampton Research and Emerald
BioSystems (e.g. Wizard I and II, Index and Crystal Screen)
only about 5% of the total conditions contain MPD. Detergent
tolerance was tested with n-dodecyl-N,N-dimethylamine-/N-
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oxide (DDAO) and n-octyl-S-p-glucoside in combination with
a paraffin-oil covering. Separation between the phases
remained intact with 0.05% n-octyl-B-p-glucoside but DDAO
was not tolerated even at very low concentrations.

5. Discussion

The series of initial experiments on the X-CHIP crystallization
platform described above demonstrates the chip’s applic-
ability for high-throughput protein crystallography and
provides insight into the benefits and limitations of this
system. Crystallization using the microbatch method on the
chip was shown to be suitable for crystal growth and also
offered additional benefits. Oil-covered drops evaporate very
slowly (days to weeks), simplifying both manual and auto-
mated setup. Furthermore, changing the composition of the
top oil layer with various oil mixtures makes it possible to vary
the rate of water evaporation over a wide range, adding
another favorable dimension to crystallization screening
(D’Arcy et al, 2004). Inherently, the system is economical
since crystallization-hit determination and optimization trials
require up to five times less protein sample by volume and 500
times less reagent solution than standard vapor-diffusion
methods. Theoretically, the volumes can be decreased even
further by applying robotic liquid-handling systems, but are
currently limited by the accuracy of manual dispensing. In
addition, the simplicity of the device results in low manu-
facturing costs and the platform design eliminates the time and
expense associated with cryogenic techniques. The small size
of the chip offers more convenient and faster visual inspection,
as all of the crystallization drops can be viewed simultaneously
under a microscope. Furthermore, the system design provides
a non-invasive means of diffraction testing and screening, as
the developed device can be mounted on most in-house and
synchrotron-beamline data-acquisition systems without any
modification of the chip or adjustments to the system. These
capabilities of the X-CHIP make it a potentially useful plat-
form for high-throughput initiatives such as fragment-based
screening by co-crystallization.

The X-CHIP system has the potential to completely remove
the ‘user factor’ between crystal growth and X-ray diffraction
data collection, eliminating crystal manipulation. The feasi-
bility of in situ data collection has significant implications.
Firstly, data collection at room temperature eliminates the
need for the tedious and often limiting step of cryocondition
optimization and results in crystal structures that are deter-
mined at temperatures that are more relevant to the physio-
logical state. Additionally, experimentally obtained SAD data
display excellent processing statistics that are clearly of suffi-
cient quality for de novo structure determination. Interest-
ingly, in at least one of the cases investigated, undisturbed
crystals showed a significantly lower mosaic spread than those
of cryogenically frozen samples, suggesting the potential
application of this system to samples of high sensitivity or
those with a large unit cell (Table 1). Once mounted on the
goniometer, navigation along the chip and alignment of any
crystal in the drops is quite straightforward, presenting the

potential for data collection in a high-throughput mode. This
approach eliminates the down-time necessary for mounting of
individual loops as in conventional robotic systems and may
save hours of valuable synchrotron beam time. Finally, the
elimination of manual crystal handling opens up the oppor-
tunity for full automation of the crystallization to data
acquisition pipeline to streamline the entire process.

Current developments on the project are aimed at scaling
down the drop volumes of the X-CHIP system. Attempting to
do so using a manual setup has proven to be challenging, but
application of a liquid-handling robotic system may address
this issue. The Mosquito crystallization robotic system
(Molecular Dimensions Ltd, Suffolk, England) has already
been used to successfully set up crystallization experiments
with total drop volumes as low as 200 nl. The X-CHIP is also
being applied to the crystallization trials of additional protein
targets. As a point of interest, experiments with highly sensi-
tive and/or small crystal samples could greatly benefit from
the use of this system, as the non-invasive data-collection
approach would be likely to resolve many problems that arise
from crystal handling. We are also exploring the application of
the chip in projects in which low mosaic spread is essential for
a successful outcome.

6. Conclusions

From the initial studies of the device it is evident that not only
does the X-CHIP have the potential to increase efficiency and
offer on-the-chip in situ data collection for de novo structure
determination, but also has a range of additional benefits
including the opportunity for full automation. Even though
the recent growth of microchip crystallization technology has
seen the development of several useful devices, the X-CHIP
platform offers previously unprecedented simplicity with
comparable or even better performance. Its intuitive design,
minimalistic support platform and compatibility with most
beamlines make this device an attractive tool for protein
crystallization and X-ray diffraction data collection.

For providing technical support and access to the in-house
and synchrotron X-ray sources, we are thankful to Aiping
Dong of the Toronto Structural Genomics Consortium and the
IMCA-CAT staff at the APS, respectively. We also extend our
gratitude to Dr Tara Davis for providing bacterial cell cultures
for purification of EphA3, Kathy Jones for her help with initial
crystallization experiments, Joe Miller for help with business
development and Jason C. Ellis for machining accessory items.
Use of the IMCA-CAT beamline 17-ID at the Advanced
Photon Source was supported by the companies of the
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Office of Basic Energy Sciences, contract No. DE-
AC2006CH11357. The authors acknowledge the grant

538 Kisselman et al. + X-CHIP

Acta Cryst. (2011). D67, 533-539



research papers

sponsor: Ontario Research and Development Challenge Fund
(99-SEP-0512).

References

Alcorn, T. & Juers, D. H. (2010). Acta Cryst. D66, 366-373.

Chayen, N. E. (1998). Acta Cryst. D54, 8-15.

Chirgadze, N. Y., Miller, J., Lam, R. & Johns, K. (2009). Patent WO/
2009/073972.

Clarke, T. E., Romanov, V., Chirgadze, Y. N., Klomsiri, C., Kisselman,
G., Wu-Brown, J.,, Poole, L. B, Pai, E. F. & Chirgadze, N. Y. (2011).
BioMed Central Struct. Biol. In the press.

D’Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). J. Cryst.
Growth, 168, 175-180.

D’Arcy, A., Mac Sweeney, A. & Haber, A. (2004). Methods, 34,
323-328.

D’Arcy, A., Mac Sweeney, A., Stihle, M. & Haber, A. (2003). Acta
Cryst. D59, 396-399.

Davis, T. L., Walker, J. R., Loppnau, P, Butler-Cole, C., Allali-
Hassani, A. & Dhe-Paganon, S. (2008). Structure, 16, 873-884.

Dhouib, K., Khan Malek, C., Pfleging, W., Gauthier-Manuel, B.,
Duffait, R., Thuillier, G., Ferrigno, R., Jacquamet, L., Ohana, J.,
Ferrer, J.-L., Théobald-Dietrich, A., Giegé, R., Lorber, B. & Sauter,
C. (2009). Lab Chip, 9, 1412-1421.

Garman, E. (1999). Acta Cryst. D55, 1641-1653.

Hansen, C. L., Classen, S., Berger, J. M. & Quake, S. R. (2006). J. Am.
Chem. Soc. 128, 3142-3143.

Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. (2002).
Proc. Natl Acad. Sci. USA, 99, 16531-16536.

Hasegawa, T., Hamada, K., Sato, M., Motohara, M., Sano, S.,
Kobayashi, T., Tanaka, T. & Katsube, Y. (2007). 24th European
Crystallographic Meeting, Marrakech, Morocco. Poster MS06 P02.

Li, L. & Ismagilov, R. F. (2010). Annu. Rev. Biophys. 39, 139-158.

May, A., Fowler, B., Frankel, K. A., Meigs, G. & Holton, J. M. (2008).
Acta Cryst. A64, C133-C134.

Ng, J. D, Clark, P. J, Stevens, R. C. & Kuhn, P. (2008). Acta Cryst.
D64, 189-197.

Zheng, B., Roach, L. S. & Ismagilov, R. F. (2003). J. Am. Chem. Soc.
125, 11170-11171.

Zheng, B., Tice, J. D., Roach, L. S. & Ismagilov, R. F. (2004). Angew.
Chem. Int. Ed. Engl. 43, 2508-2511.

Acta Cryst. (2011). D67, 533—-539

Kisselman et al. -+ X-CHIP 539



